In recreational number theory, a narcissistic number (also known as a pluperfect digital invariant (PPDI), an Armstrong number (after Michael F. Armstrong) or a plus perfect number) is a number that is the sum of its own digits each raised to the power of the number of digits. This definition depends on the base b of the number system used, e.g. b = 10 for the decimal system or b = 2 for the binary system.
The definition of a narcissistic number relies on the decimal representation n = dkdk-1...d1d0 of a natural number n, e.g.
- n = dk·10k-1 + dk-1·10k-2 + ... + d2·10 + d1,
with k digits di satisfying 0 ≤ di ≤ 9. Such a number n is called narcissistic if it satisfies the condition
- n = dkk + dk-1k + ... + d2k + d1k.
For example the 3-digit decimal number 153 is a narcissistic number because 153 = 13 + 53 + 33.
Narcissistic numbers can also be defined with respect to numeral systems with a base b other than b = 10. The base-b representation of a natural number n is defined by
- n = dkbk-1 + dk-1bk-2 + ... + d2b + d1,
where the base-b digits di satisfy the condition 0 ≤ di ≤ b-1. For example the (decimal) number 17 is a narcissistic number with respect to the numeral system with base b = 3. Its three base-3 digits are 122, because 17 = 1·32 + 2·3 + 2 , and it satisfies the equation 17 = 13 + 23 + 23.
If the constraint that the power must equal the number of digits is dropped, so that for some m possibly different from k it happens that
- n = dkm + dk-1m + ... + d2m + d1m,
then n is called a perfect digital invariant or PDI. For example, the decimal number 4150 has four decimal digits and is the sum of the fifth powers of its decimal digits
- 4150 = 45 + 15 + 55 + 05,
so it is a perfect digital invariant but not a narcissistic number.
In "A Mathematician's Apology", G. H. Hardy wrote:
- There are just four numbers, after unity, which are the sums of the cubes of their digits:
- 153 = 13 + 53 + 33
- 370 = 33 + 73 + 03
- 371 = 33 + 73 + 13
- 407 = 43 + 03 + 73.
- These are odd facts, very suitable for puzzle columns and likely to amuse amateurs, but there is nothing in them which appeals to the mathematician.
The sequence of "base 10" narcissistic numbers starts: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474 ...The sequence of "base 3" narcissistic numbers starts: 0, 1, 2, 12, 122The sequence of "base 4" narcissistic numbers starts: 0, 1, 2, 3, 313The number of narcissistic numbers in a given base is finite, since the maximum possible sum of the kth powers of a k digit number in base b isand if k is large enough thenin which case no base b narcissistic number can have k or more digits.There are 88 narcissistic numbers in base 10, of which the largest is- 115,132,219,018,763,992,565,095,597,973,971,522,401
public static void main(String args[]){
int num = Integer.parseInt(args[0]);
int n = num;
int check=0,remainder;
while(num > 0){
remainder = num % 10;
check = check + (int)Math.pow(remainder,3);
num = num / 10;
}
if(check == n)
System.out.println(n+" is an Armstrong Number");
else
System.out.println(n+" is not a Armstrong Number");
}
}
0 comments:
Post a Comment